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Abstract

The dynamic response of an axially translating continuum subjected to the combined effects of a pair of
spring supported frictional guides and axial acceleration is investigated; such systems are both non-
conservative and gyroscopic. The continuum is modeled as a tensioned string translating between two rigid
supports with a time-dependent velocity profile. The equations of motion are derived with the extended
Hamilton’s principle and discretized in the space domain with the finite element method. The stability of the
system is analyzed with the Floquet theory for cases where the transport velocity is a periodic function of
time. Direct time integration using an adaptive step Runge–Kutta algorithm is used to verify the results of
the Floquet theory. This approach can also be employed in the general case of arbitrary time-varying
velocity. Results are given in the form of time history diagrams and instability point grids for different sets
of parameters such as the location of the stationary load, the stiffness of the elastic support, and the values
of initial tension. This work showed that presence of friction adversely affects stability, but using non-zero
spring stiffness on the guiding force has a stabilizing effect. This work also showed that the use of the finite
element method and Floquet theory is an effective combination to analyze stability in gyroscopic systems
with stationary friction loads.
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1. Introduction

Dynamics of translating continua has been intensely investigated in the past 40 years because of
the large number of applications that are encountered in mechanical systems such as power
transmission chains and belts, band saw blades, textile fibers, magnetic tapes, paper sheets, thread
lines, elevator cables and pipes conveying fluids. Excessive vibrations are usually to be avoided in
axially traveling structures; in magnetic tape drives, for example, they cause imperfections on the
magnetic signal and could cause damage to the tape, while in band saws they result in poor cutting
quality.
The literature on axially moving continua has been reviewed up to 1978 by Ulsoy et al. [1] and

more recently by Wickert and Mote [2] who included the work done up to 1988. A review on the
research specifically regarding the transmission belts was given by Abrate, who discussed the
effects of parameters such as initial tension, transport velocity, bending rigidity, support flexibility
and pulley imperfections [3].
Wickert and Mote investigated the moving load problem applied to monocable ropeway

systems [4]. Closed-form solutions for axially moving continua subject to arbitrary excitation and
initial conditions were also derived by using complex modal analysis and a Green’s function
method [5]. Ulsoy treated a model for the transverse vibration of an axially moving beam
including elastic coupling between two adjacent spans [6]. In these works the axial velocity is taken
to be constant and the equations of motion have constant coefficients. In many practical
applications, however, the vibration transients are important and may significantly affect the
motion.
Miranker was the first to derive the equation of motion for an axially accelerating string [7]. An

approximate solution for an accelerating string driven harmonically at one end was later given by
Mote who analyzed stability by Laplace transform techniques [8]. More recently, Pakdemirli et al.
applied the Floquet theory to analyze the stability of a string moving with a prescribed sinusoidal
velocity function [9]. Employing the same method, Pakdemirli and Batan analyzed stability for the
case with periodic constant acceleration–deceleration profile [10]. Pakdemirli and Ulsoy also
applied the method of multiple scales when the axial velocity of the string is assumed to have small
harmonic variations about a constant mean velocity [11]. Wickert presented a perturbation
analysis, following the asymptotic method of Krylov, Bogoliubov and Mitropolsky, for the case
of a transport velocity varying slowly on the time scale of the natural periods of oscillation [12].
Zhu and Guo [13], and Ozkaya and Pakdemirli [14] eventually found exact solutions for a string
with arbitrary velocity profile through equivalence transformations in terms of curvilinear
characteristic coordinates. Wickert [15] and Oz and Pakdemirli [16] also analyzed stability of
accelerating beams and investigated the effect of different flexural stiffness values by perturbation
techniques.
In all the studies mentioned above the system is completely conservative and no friction is

involved. However, in many applications, friction forces generated by components such as fixed
guides and recording heads could significantly affect the motion of the continuum.
Cheng and Perkins derived exact solutions through separation of variable for an axially moving

string subject to a dry friction guide, in case of constant transport velocity [17]. Zen and Müftü
investigated this problem using the finite element method and a-method of time integration [18].
Chen considered a stationary load containing parameters such as inertia and damping, in addition
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G. Zen, S. Müftü / Journal of Sound and Vibration 289 (2006) 551–576 553
to dry friction and stiffness [19]. Chakraborty and Mallik investigated the response of a beam with
a frictional intermediate guide, but again the transport velocity is considered to be constant [20].
The problem of an accelerating translational continuum subjected to non-conservative forces has
not been addressed to the best of the authors’ knowledge.
In this paper, the equation of motion is derived with the extended Hamilton’s principle, and

discretized in the space domain employing a finite element approach. The Floquet theory is
employed to analyze stability of a frictional, but linear, system with periodic transport velocity
profile. The results for systems without friction load are compared to those given in Ref. [9]. The
effects of parameters such as stationary load location, stiffness of the elastic supports, initial
tension and friction force are also investigated with respect to stability. Direct time numerical
integration, based on a Runge–Kutta algorithm, is used to confirm the results of the Floquet
theory and can be used in the general case of nonlinear systems with arbitrary transport velocity.
2. Governing equations

The model is graphically represented in Fig. 1a, where a continuum is axially translating
between two supports, placed a distance L apart, with a prescribed axial velocity V ðtÞ. First the
case with rigid and fixed end supports is considered. The continuum is assumed to have negligible
bending stiffness, like a string, and it could be subjected to a distributed load q, which is taken as
positive downward. The model is two-dimensional, therefore only displacements in the x–z plane
are considered and defined as u and w, respectively. The non-conservative subsystem is
represented by two stationary friction loads F1 and F2, located at x ¼ D and acting, respectively,
on the top and on the bottom of the string. The load system remains in contact with the string due
to two pre-loaded springs; the pre-load values are N1 and N2, while the spring stiffnesses are k1

and k2. The string is subject to the tensions T1 and T2 at the left and at the right of the friction
load, respectively.
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Fig. 1. Schematics of the system represented by an axially accelerating string, (a) moving between two fixed supports

and subject to a stationary friction load; and, (b) moving between two pulleys.
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In order to derive the equations of motion for the model described above, Hamilton’s Principle
has been employed in its extended version including non-conservative forces [21]. Hamilton’s
Principle states that, as a system moves from configuration 1 at time t1 to configuration 2 at time
t2, the path taken is such that

d
Z t2

t1

ðEkin � Epot þWncÞdt ¼ 0, (1)

where d denotes the variation, Ekin is the kinetic energy, Epot is the total potential energy and Wnc

is the work done by non-conservative forces.
The kinetic energy can be derived by defining a position vector and taking its derivative to

obtain the velocity of any point in the system. The position vector r after deformation of a point
initially located at a distance x from the origin can be written as

r ¼ ðxþ uÞiþ wk, (2)

where i and k are the unit vectors along the x- and z-axis, respectively. The material derivative of
the position vector represents the velocity vector v and can be written as follows:

v ¼ ðV þ u;t þ Vu;xÞiþ ðw;t þ Vw;xÞk, (3)

where a subscripted comma represents partial differentiation, and V is the longitudinal transport
velocity. The kinetic energy of the string is given by

Ekin ¼
r
2

Z L

0

½ðV þ u;t þ Vu;xÞ
2
þ ðw;t þ Vw;xÞ

2
�dx, (4)

where r is the mass of the string per unit length. The total potential energy is given by

Epot ¼

Z L

0

1

2
EA�2x þ T�x þ qw

� �
dxþ

1

2
ðk1 þ k2Þw

2
D, (5)

where the first term represents the strain energy and the following terms are the potential energy
of the applied loads such as tension, distributed forces and elastic forces. E is the Young’s
modulus of the string, A is the cross-sectional area, �x is the axial strain, T is the tension, q is the
distributed load, k1 and k2 are the spring stiffnesses and wD is the vertical string displacement at
location x ¼ D.
Using the nonlinear Lagrangian definition of axial strain,

�x ¼ u;x þ
1
2
ðw;xÞ

2, (6)

in Eq. (5) and after neglecting the higher-order terms, the total potential energy is expressed in
terms of the two dependent variables u and w, as follows:

Epot ¼

Z L

0

1

2
EAu2;x þ T u;x þ

1

2
w2
;x

� �
þ qw

� �
dxþ

1

2
ðk1 þ k2Þw

2
D. (7)

The work done by non-conservative forces is expressed by the following equation:

Wnc ¼ �ðF1 þ F2ÞuD, (8)
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where uD is the horizontal displacement of the string at x ¼ D. Finally by substituting Eqs. (4), (7)
and (8) into Eq. (1) leads to the following equations of motion in the x and z directions:

rðu;tt þ _Vð1þ u;xÞ þ 2Vu;xt þ V2u;xxÞ � EAu;xx þ ðF1 þ F2Þdðx�DÞ ¼ 0, (9)

rðw;tt þ _Vw;x þ 2Vw;xt þ V2w;xxÞ � Tw;xx þ qþ ðk1 þ k2Þwdðx�DÞ ¼ 0, (10)

where the superscript denotes time derivation and dðx�DÞ is the Dirac delta function. Thus, it is
found that the motion is governed by two partial differential equations with time dependent
coefficients. These are the transport velocity V, its time derivative _V , string tension T and
frictional forces F1 and F2. For a continuum moving between two pulleys, one of which is
supported by a spring with stiffness ks as shown in Fig. 1b, force equilibrium requires that the
initial tension in the string T0, the centrifugal force rV2 acting on the string, the restoring forces
developed in the string, usAE=L and in the spring ksusp be in equilibrium. us and usp are the
elongations of the string and the spring, respectively. By considering the total elongation due to
centrifugal force uc ¼ us þ usp along with the force balance it can be shown that the tensile force
varies according to the following relation [22]:

T ¼ T0 þ ZrV2, (11)

where Z ¼ 1=½1þ ðksL=2EAÞ� is a parameter depending on the support system. For constant
displacement mechanisms, such as the fixed rollers with rigid shafts found in tape drives, Z can be
taken as 0. When the support rigidity vanishes, as in case of some test equipment where the
tension is applied by dead-weights, Z is equal to 1. In such a case, the string tension depends on
velocity, and therefore on time [9]. On the other hand the frictional forces depend on the normal
force, which is a function of the string displacement at location x ¼ D in the following way:

F1 ¼ m½N1 þ k1wD�; F2 ¼ m½N2 � k2wD�, (12)

where m is the dynamic friction coefficient, considered to be the same on both sides of the string. It
can be noted that this expression for the friction forces constitutes a coupling term for the
governing equations (9) and (10).
This system of equations can be simplified for many practical cases where the longitudinal wave

speed, cl ¼ ðEA=rÞ1=2, greatly exceeds the transverse wave speed , c ¼ ðT=rÞ1=2. For example, in a
steel band saw blade with Young’s modulus of 202GPa, mass density of 7800 kg=m3, cross-
sectional dimensions of 2� 30mm2, and under tension of 26 kN, the longitudinal wave speed
becomes 5100m=s, while the transverse wave speed becomes 75m=s [15]. Typical transport
velocity for a band saw blade is around 50m=s. In magnetic tapes, Young’s modulus is about
5GPa, mass per unit volume is 1400 kg=m3, cross sectional dimensions are 8mm� 12mm, typical
tension is 0:32N, so the longitudinal and the transverse wave speeds are 1890 and 49m=s,
respectively, while the transport velocity is usually less than 8m=s [23]. Therefore, in the time scale
of transverse motion the string can be assumed to stretch in a quasi-static manner [17].
Under this assumption the longitudinal inertia term in Eq. (9) can be neglected. The same

equation, after integration with respect to x and using the constitutive relation,

T ¼ EAux, (13)
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where the higher order, w2
;x=2, term is neglected, becomes

T ¼ T1 þ ðF1 þ F2ÞHðx�DÞ

¼ T1 þ m½N1 þN2 þ ðk1 � k2ÞwD�Hðx�DÞ, ð14Þ

where Hðx�DÞ is the Heaviside function. Then by substituting Eq. (14) into Eq. (10) the final
equation of motion in the transverse direction becomes

rðw;tt þ _Vw;x þ 2Vw;xt þ V2w;xxÞ � fT1 þ m½N1 þN2 þ ðk1 � k2ÞwD�Hðx�DÞgw;xx

þ qþ ðk1 þ k2Þwdðx�DÞ ¼ 0. ð15Þ

This is the equation of motion of a tensioned, accelerating string subjected to frictional forces at
x ¼ D and distributed load q. Eq. (15) has time-dependent coefficients due to V ¼ V ðtÞ, and a
nonlinearity due to the friction load dependence on the vertical displacement at point x ¼ D; only
in the special case of k1 ¼ k2 the nonlinearity vanishes. The first four terms of Eq. (15) represent
inertia terms and are, respectively, the local, the tangential, the Coriolis and the centripetal
acceleration. The terms in the curly brackets represent the tension load, which depend on the
friction force and eventually on the normal and the elastic forces, after the simplifications
described above. The last two terms represent the external loads. The equation of motion is
subjected to the following boundary conditions:

at x ¼ 0 : wð0; tÞ ¼ 0; tX0, ð16Þ

at x ¼ L : wðL; tÞ ¼ 0; tX0, ð17Þ

and to the following initial conditions:

at t ¼ 0 : wðx; 0Þ ¼ w0ðxÞ; 0oxoL, ð18Þ

at t ¼ 0 : w;tðx; 0Þ ¼ _w0ðxÞ; 0oxoL. ð19Þ

3. Solution methods

Next a numerical procedure to analyze the governing equation (15) for the general case of time-
dependent coefficients is described. In Section 3.1, the finite element method is used to discretize
the system in the space domain. In Section 3.2, the Floquet theory is used to analyze stability in
linear systems with periodic coefficients. The procedure to implement this method in a computer
program is also described.

3.1. Space discretization by the finite element method

The equation of motion is first discretized in the space domain by using the finite element
method. Traditional variational methods, such as the Galerkin’s method for example, are less
suitable for this purpose because the stationary load system provokes a discontinuity in the
displacement function, making it more difficult to select, a priori, an approximation function for
the whole string.
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Following the steps explained in Ref. [24] the space domain is divided into a finite number of
elements n, with the displacements, velocities and accelerations at the nþ 1 nodes as degrees of
freedom. For each element a linear approximation function is chosen. Upon assembly of elements
and using matrix notation, the following boundary/initial value problem is obtained:

M €wþG _wþ Kw ¼ f, ð20Þ

w1 ¼ 0; wnþ1 ¼ 0; tX0, ð21Þ

wt¼0 ¼ fw0ðxiÞg; _wt¼0 ¼ f _w0ðxiÞg; i ¼ 1; . . . ; nþ 1, ð22Þ

where the subscript i refers to a nodal location on the discretized domain.
In Eq. (20) wðnþ1Þ, _wðnþ1Þ and €wðnþ1Þ are the vectors of displacements, velocities and

accelerations, defined as follows:

w ¼

w1

..

.

wnþ1

8>><
>>:

9>>=
>>;; _w ¼

_w1

..

.

_wnþ1

8>><
>>:

9>>=
>>;; €w ¼

€w1

..

.

€wnþ1

8>><
>>:

9>>=
>>;. (23)

The consistent mass matrix Mðnþ1Þ�ðnþ1Þ and the gyroscopic matrix Gðnþ1Þ�ðnþ1Þ are found as
follows:

M ¼
rhe

6

2 1 0

1 4 1

. .
. . .

. . .
.

1 4 1

0 1 2

2
6666664

3
7777775
; G ¼ rV ðtÞ

�1 1 0

�1 0 1

. .
. . .

. . .
.

�1 0 1

0 �1 �1

2
6666664

3
7777775
, (24)

where he is the element length. Note that the subscripts in brackets indicate the size of the vectors
or matrices. Note that the gyroscopic matrix has a skew-symmetric structure. The stiffness matrix
Kðnþ1Þ�ðnþ1Þ consists of four sub-matrices:

K ¼ K1 þ K2 þ K3 þ K4, (25)

where

K1 ¼
r _V ðtÞ
2

�1 1 0

�1 0 1

. .
. . .

. . .
.

�1 0 1

0 �1 �1

2
666666664

3
777777775
,
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K2 ¼
�rV2ðtÞ

he

1 �1 0

�1 2 �1

. .
. . .

. . .
.

�1 2 �1

0 �1 1

2
666666664

3
777777775
,

K3 ¼
1

he

½T1 þ ðF1 þ F2ÞHðxi �DÞ�

1 �1 0

�1 2 �1

. .
. . .

. . .
.

�1 2 �1

0 �1 1

2
666666664

3
777777775
, ð26Þ

where D is the node at xi ¼ D. The matrix K4 is defined such that K4ij
¼ 0, for all i and j, except at

the guide location ði ¼ D; j ¼ DÞ where K4DD
¼ ðk1 þ k2Þ. All of the sub-matrices of K have the

same dimensions as K. The vector of external loads fðnþ1Þ is found as

f ¼
�qhe

2
f1 2 . . . 2 1gT. (27)

The stiffness matrix K derives from four distinct physical effects; the tangential acceleration
component K1, the centripetal acceleration component K2, the tension component K3 and the
component K4 due to the elastic springs. The mass, tension and centripetal acceleration matrices
are symmetric, while the gyroscopic and the tangential acceleration matrices are skew-symmetric.
If the mass per unit length is assumed to be constant in time, then the mass matrix is also constant,
while in general the other matrices can be time-dependent.
Eq. (20) represents the semi-discrete form of the equation of motion. After the application of

the boundary conditions (21) the first and the last rows of the matrices in Eq. (20) are dropped and
the system is reduced to n� 1 equations with 3ðn� 1Þ degrees of freedom.
3.2. Stability analysis by the Floquet theory

When the system is linear and the time-dependent coefficients are periodic, a stability analysis
can be achieved by the Floquet theory as explained by Nayfeh and Mook [25]. By defining

Z1i ¼ wi; Z2i ¼ _wi for i ¼ 1; . . . ;N, (28)

where N ¼ n� 1, the canonical form of Eq. (20) is obtained as follows:

_Z ¼ PðtÞZþQ, (29)
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where the matrices and the vectors involved are defined as follows:

Z ¼
Z1

Z2

( )
ð2NÞ

; PðtÞ ¼
½0� ½I�

½�M�1KðtÞ� ½�M�1GðtÞ�

" #
ð2NÞ�ð2NÞ

; Q ¼
½0�

½M�1f�

" #
ð2NÞ

. (30)

In this study the longitudinal transport velocity V is allowed to be periodic function of time with
period T. Therefore, the matrix PðtÞ also varies periodically with period T. The vector Q, on the
other hand, is assumed to be constant.
The 2N-dimensional linear system expressed by Eq. (29) admits a set of 2N linearly independent

solutions ZiðtÞ, with i ¼ 1; . . . ; 2N. These solutions constitute the fundamental set of solutions. As
Pðtþ TÞ ¼ PðtÞ, due to the periodic nature of G and K matrices, and as Q is constant, it is
deduced that Ziðtþ TÞ, with i ¼ 1; . . . ; 2N, also forms a fundamental set of solutions [25]. A
constant, non-singular (monodromy) matrix U2N�2N establishes the relation

Zðtþ TÞ ¼ UZðtÞ. (31)

The eigenvalues li of the monodromy matrix are the Floquet or characteristic multipliers.
It is also possible to find a generalized modal matrix B that reduces the matrix U to the Jordan

Canonical form, such that
B�1UB ¼ J, (32)

where J is upper triangular. On its main diagonal there are the eigenvalues of U, the terms above
the repeated eigenvalues are equal to 1 and all the other terms are zeros.
If the eigenvalues of U are distinct, then J is diagonal, so in this case we have

Ziðtþ nTÞ ¼ ln
i ZiðtÞ for i ¼ 1; . . . ; 2N, (33)

where n is an integer. Consequently as t!1
ZiðtÞ ! 0 if jlijo1;

ZiðtÞ ! 1 if jlij41;
(34)

when li ¼ 1 then Zi is periodic with period T, while for li ¼ �1 Zi is periodic with period 2T .
When U has repeated eigenvalues, then J is simply triangular and it can be demonstrated also

for this case that the solutions of the system for t!1 are bounded if, and only if, all the Floquet
multipliers have modulus smaller or at most equal to one [25]. On the other hand, if there exists
even just one multiplier with magnitude larger than 1, then, there is at least one unbounded
solution and the system becomes unstable [25]. The stability analysis of the system ultimately
depends on the evaluation of the monodromy matrix and its eigenvalues. In Appendix A, a
comparison of the amplitude growth based on the Floquet theory (Eq. (33)), and direct time
integration is provided.
The monodromy matrix is obtained numerically. By setting ZðtÞ ¼ I, where I2N�2N is the

identity matrix, it is seen from Eq. (31) that Zðtþ TÞ ¼ U. This means that the monodromy
matrix U is equal to the matrix of the fundamental set of solutions ZðTÞ, when the system is
solved with initial conditions Zð0Þ ¼ I. The monodromy matrix is thus established by numerically
integrating Eq. (29) for one full period, 2N times. A Matlab program has been created for
this analysis. Some details of this program and evaluation of its performance is presented in
Appendix B.
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4. Results and discussion

In Section 4.1, the Floquet theory is applied to the special case of a traveling string with
sinusoidal transport velocity and without guiding forces, such as in Ref. [9]. The stability of the
system is investigated for different values of amplitude and frequency of the velocity function. In
order verify the results of the Floquet theory, time history diagrams of some of the cases are
obtained through numerical time integration. The effects of frictional guiding forces on the
stability are investigated in Section 4.2, by varying the friction force magnitude, spring stiffness
and the load position.

4.1. Stability analysis of accelerating systems without stationary load

First, the stability of an axially accelerating string with periodic transport velocity is
investigated using the Floquet theory. This model is a simplified form of the general case described
in this paper by Eq. (15), without the non-conservative forces ðm ¼ 0Þ, the elastic springs ðk1 ¼

k2 ¼ 0Þ and the distributed force ðq ¼ 0Þ. The base parameters used in this paper, given in Table 1,
are from Pakdemirli et al. who used the Galerkin method to discretize the equation of motion in
the space domain by assuming a series of sinusoidal trial functions [9]. The transport velocity is
assumed to vary in time according to

VðtÞ ¼ V0 sinðo0tÞ, (35)

where V0 represents the maximum amplitude of the velocity function and o0 is its frequency.
For constant transport speed a buckling instability occurs when the transport velocity becomes

equal to the wave speed [2]; the corresponding velocity is the critical transport velocity V cr. In the
case of a string with a flexible support, as shown in Fig. 1b, transverse wave speed is
c ¼ ðT0=rÞ

1=2; by using Eq. (11) in Eq. (15) the critical transport velocity can be shown to be

V cr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T0

rð1� ZÞ

s
. (36)

For the parameter values given in Table 1, V cr is found to be 92.68m=s.
Pakdemirli et al. showed that, by increasing the number of terms of approximation in the series

from four to eight, more unstable points are found especially at lower frequencies [9]. Moreover,
these points tend to cluster and represent a better defined instability region. These results,
obtained by taking up to eight terms of approximation, also showed the existence of many stable
points in the area of the grid even when V04V cr [9]. In Fig. 2, on the other hand, the unstable
data points obtained with the finite element implementation of the Floquet theory for n ¼ 10 are
plotted. In this case all the points in the grid when V04V cr are predicted to be unstable, with the
Table 1

Parameters used in the Floquet stability analysis with a finite element discretization

L (m) n T0 (N) r (kg=m) q Z

0.3681 10 76.22 4.032e�2 0 0.78
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by 10pV0p100m=s and 10po0p50 rad=s with step of V0 ¼ 2m=s and o0 ¼ 2 rad=s. The evaluation is made for the

base parameter given in Table 1. Circles in the plot correspond to unstable data points.
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only exception for the point corresponding to V0 ¼ 94m=s and o0 ¼ 44 rad=s. The differences
between the plots given in [9] and Fig. 2 are related to the different methods employed for the
space discretization, which affect in different manners the resulting stiffness of the system. The
values of the jljmax for all the unstable points in Fig. 2 are reported in Ref. [27].
Direct numerical time integration is employed in order to verify the results of Fig. 2. A

Runge–Kutta algorithm, described in Ref. [26], is incorporated in a computer program to
integrate the governing equation (29). The system is given a small initial perturbation described by

Zi ¼ w0ðxiÞ ¼ �A sinðpihe=LÞ for 1pipN;

Zi ¼ _w0ðxiÞ ¼ 0 for N þ 1pip2N;
(37)

where A ¼ 1mm. This program is used to obtain the displacement history at any selected node of
the string. Two sets of o0–V0 values were used. The numerical time integration for both of these
cases has been carried out for 100 periods ðT ¼ 2p=o0Þ. The first 10 s of the time history of the
node located at x ¼ L=2 for the parameter set of (36 rad=s, 80m=s) is given in Fig. 3, and that of
(44 rad=s, 94m=s) is given in Fig. 4. The maximum eigenvalues of these points correspond to
lmax ¼ 1:0172 and 1.0000, respectively [27]. Thus, the first set is expected to be unstable while the
second one is expected to be stable.
Figs. 3 and 4 show a good agreement with the predictions of the Floquet theory. Indeed, in

Fig. 3, where lmax ¼ 1:0172, the displacement of the mid-point experiences a periodically
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Fig. 3. Time history diagram of the displacement at the node x ¼ L=2 for a data point predicted as unstable by the

Floquet theory. V0 ¼ 80m=s, o0 ¼ 36 rad=s, 0ptp57T , T ¼ 0:1745 s, lmax ¼ 1:0172.
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Fig. 4. Time history diagrams of the displacement at the node x ¼ L=2 for a data point predicted as stable by the

Floquet theory. V0 ¼ 94m=s, o0 ¼ 44 rad=s, 0ptp70T , T ¼ 0:1428 s, lmax ¼ 1:0000.
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increasing amplitude. This confirms the unstable nature of the corresponding parameter set,
which was already recognized to be unstable by the previous Floquet analysis. It is interesting to
note that in this case V0oV cr. On the other hand, Fig. 4 shows the displacement history of the
only data point with V04V cr that was predicted to be stable by the Floquet theory. The plot
shows that even after a large number of periods the amplitude of oscillation remains bounded,
therefore this system is confirmed to be stable.

4.2. Stability analysis of accelerating systems with stationary load

In this section, the Floquet theory is applied to a system translating with a periodically varying
transport velocity and subjected to a pair of frictional guiding forces, as represented in Fig. 1. The
stiffness values of the two springs are assumed to be equal, namely k1 ¼ k2, therefore the
governing equation is linear and the Floquet theory can still be applied. The total friction force
F1 þ F2 is assumed to be constant and equal to a certain fraction of the initial tension T0. The
transport velocity varies sinusoidally according to Eq. (35). The tension now is not constant along
the entire string span; on the left-hand side of the guide location the tension T1 is given by

T1 ¼ T0 þ ZrV2, (38)

while the tension T2 on the right-hand side is derived by the force balance in the x-direction and is
given by

T2 ¼ T1 þ ðF1 þ F2Þ. (39)

Since the transport velocity is changing direction with period T=2, the friction forces also change
direction with period T=2 as shown in Fig. 5a and b. It is seen that with these assumptions the
profile of the tension T2 has a discontinuity at multiples of T=2 as shown in Fig. 5d.

4.2.1. Effect of friction force

The case of ðF1 þ F2Þ=T0 ¼ 0:1 has been analyzed for V0–o0 combinations identical to those of
Fig. 2; V0 is varied between 10 and 94m=s with a step of 2m=s, while o0 was changed from 10 to
50 rad=s with a step of 2 rad=s. The base parameters given in Table 1 are used, in addition to
D=L ¼ 0:5, and k1 ¼ k2 ¼ 10N=m. The monodromy matrix was evaluated for each V0–o0 pair,
and its eigenvalues, which represent the Floquet multipliers of the system, were found. Those
systems that have at least one eigenvalue with modulus larger than one are unstable and are
marked with a circle in the V0–o0 plane. The unstable systems are shown in Fig. 6 and the
corresponding eigenvalues are reported in Table 2, where for each unstable system only
the eigenvalue with largest modulus is listed. The wave speed in this case is not constant along the
string span. The lower wave speed is obtained where and when the tension is lower, and this
happens on the side of the string at the right of the stationary load in the half-period when the
friction force in Eq. (39) has a negative sign. In fact, during T=2otoT the tension T2 is lower
and the critical transport speed becomes:

V cr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:9T0

rð1� ZÞ

s
¼ 87:9m=s for T=2otoT ; DoxoL. (40)
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Fig. 5. Transient variation of (a) translation velocity V, (b) friction forces F1 þ F2, (c) tension T1, and (d) tension T2

for an accelerating string with stationary loads.

Fig. 6. The effect of relatively low friction, ðF1 þ F2Þ=T0 ¼ 0:1, for a system subjected to a stationary friction load with

at D=L ¼ 0:5. The region of data points is made by 10pV0p94m=s and 10po0p50 rad=s with step of V0 ¼ 2m=s and
o0 ¼ 2 rad=s. The base parameters are reported in Table 1. This case also had k1 ¼ k2 ¼ 10N=m. Circles correspond to

unstable data points.

G. Zen, S. Müftü / Journal of Sound and Vibration 289 (2006) 551–576564



ARTICLE IN PRESS

Table 2

Floquet multipliers corresponding to the unstable points of Fig. 6, for the frequencies in the range of 0po0p30 rad=s

o0 V0 jljmax o0 V0 jljmax o0 V 0 jljmax o0 V0 jljmax

10 24 1.0423E+00 14 82 1.0241E+00 20 30 1.0582E+00 24 88 1.0184E+00

10 38 1.0255E+00 14 88 1.0320E+00 20 34 1.0482E+00 24 90 3.3928E+00

10 48 1.0090E+00 14 90 3.7315E+00 20 38 1.0456E+00 24 92 4.6706E+02

10 62 1.0090E+00 14 92 1.8070E+04 20 48 1.0242E+00 24 94 6.7770E+04

10 64 1.0257E+00 14 94 7.5544E+07 20 50 1.0244E+00 26 56 1.0294E+00

10 66 1.0325E+00 16 18 1.0200E+00 20 70 1.0188E+00 26 66 1.0076E+00

10 76 1.0493E+00 16 22 1.0040E+00 20 84 1.0494E+00 26 72 1.0064E+00

10 78 1.0135E+00 16 24 1.0746E+00 20 86 1.0320E+00 26 74 1.0213E+00

10 86 1.0404E+00 16 26 1.0316E+00 20 88 1.0151E+00 26 78 1.0130E+00

10 90 9.6147E+00 16 28 1.0296E+00 20 90 9.3960E+00 26 88 1.1090E+00

10 92 1.2491E+04 16 34 1.0422E+00 20 92 8.6111E+01 26 90 1.7571E+00

10 94 9.1312E+11 16 40 1.0238E+00 20 94 2.4561E+05 26 92 2.1662E+02

12 12 1.0065E+00 16 46 1.0132E+00 22 18 1.0626E+00 26 94 9.4424E+04

12 20 1.0176E+00 16 52 1.0520E+00 22 24 1.0327E+00 28 12 1.0277E+00

12 24 1.0061E+00 16 56 1.0209E+00 22 30 1.0498E+00 28 16 1.0394E+00

12 44 1.0149E+00 16 66 1.0186E+00 22 36 1.0123E+00 28 26 1.0005E+00

12 56 1.0173E+00 16 68 1.0050E+00 22 42 1.0420E+00 28 40 1.0151E+00

12 58 1.0031E+00 16 72 1.0496E+00 22 54 1.0127E+00 28 50 1.0193E+00

12 62 1.0258E+00 16 74 1.0252E+00 22 56 1.0451E+00 28 62 1.0338E+00

12 64 1.0230E+00 16 80 1.0145E+00 22 62 1.0107E+00 28 66 1.0438E+00

12 78 1.0106E+00 16 86 1.0159E+00 22 80 1.0471E+00 28 72 1.0154E+00

12 88 1.2197E+00 16 88 1.1770E+00 22 84 1.0175E+00 28 74 1.0169E+00

12 90 5.9184E+00 16 90 2.7075E+00 22 88 1.0106E+00 28 78 1.0255E+00

12 92 7.7359E+04 16 92 5.8685E+03 22 90 5.8897E+00 28 82 1.0395E+00

12 94 1.1804E+10 16 94 2.0981E+07 22 92 2.6920E+02 28 84 1.0045E+00

14 12 1.0333E+00 18 10 1.0160E+00 22 94 4.8278E+04 28 86 1.0078E+00

14 14 1.0117E+00 18 14 1.0241E+00 24 10 1.0138E+00 28 92 2.3460E+02

14 16 1.0216E+00 18 18 1.0005E+00 24 14 1.0629E+00 28 94 3.8963E+03

14 18 1.0118E+00 18 38 1.0225E+00 24 20 1.0325E+00 30 10 1.0098E+00

14 20 1.0364E+00 18 46 1.0566E+00 24 26 1.0170E+00 30 12 1.0280E+00

14 22 1.0385E+00 18 54 1.0127E+00 24 32 1.0086E+00 30 20 1.0076E+00

14 28 1.0258E+00 18 66 1.0371E+00 24 38 1.0041E+00 30 22 1.0090E+00

14 38 1.0325E+00 18 76 1.0377E+00 24 44 1.0066E+00 30 28 1.0191E+00

14 40 1.0163E+00 18 84 1.0036E+00 24 48 1.0265E+00 30 30 1.0391E+00

14 44 1.0430E+00 18 88 1.1455E+00 24 52 1.0545E+00 30 32 1.0100E+00

14 54 1.0088E+00 18 90 3.5770E+00 24 62 1.0086E+00 30 54 1.0404E+00
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Table 2 (continued )

o0 V0 jljmax o0 V0 jljmax o0 V 0 jljmax o0 V0 jljmax

14 56 1.0332E+00 18 92 1.4347E+03 24 68 1.0493E+00 30 58 1.0138E+00

14 64 1.0074E+00 18 94 1.6117E+06 24 80 1.0182E+00 30 70 1.0086E+00

14 80 1.0448E+00 20 20 1.0339E+00 24 82 1.0062E+00 30 76 1.0200E+00

For each data point only the eigenvalue with highest modulus is reported. For a complete list of eigenvalues see [27].

Note that the boxed values indicate the cases where V04V cr ¼ 87:9m=s.
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Fig. 6 shows that most of the points with V04V cr are unstable; however there are several stable
data points when V0 ¼ 88m=s and one stable point when V0 ¼ 90m=s. A possible explanation of
this could be that in these cases the part of the system where the wave speed is lower does not
remain under critical conditions for a time long enough to cause instability. Considering that the
magnitude of the largest eigenvalue is an indication of how fast the system becomes unstable
(Appendix A), it is worth noting that the instabilities, caused by friction, are not as strong as the
instabilities that occur when V0XV cr, as can be seen from the eigenvalue magnitudes reported in
Table 2.
A of comparison Figs. 6 and 2 shows that, when a stationary friction load is added to the

system, the number of unstable points increases from 97 in Fig. 2 to 311 in Fig. 6. This is despite
the fact that the friction forces are just 10% of the initial tension T0. In order to investigate
whether this is mostly due to the friction force or whether it is the effect of the spring forces, the
same case is analyzed when the spring stiffnesses are negligible, namely k1 ¼ k2 ¼ 0. The grid of
the unstable systems is shown in Fig. 7 and the corresponding eigenvalues are listed in Table 3. In
this case there are 357 unstable points on the grid, and thus the total number of unstable points is
even higher than the case with non-zero stiffness springs. It can be deduced that the stability of the
system is mainly affected by the addition of a stationary friction force, and with small values of
friction there are unstable points even for small values of amplitude and frequency. The statement
about the relative weakness of the instability introduced by addition of friction is also valid in this
case, as shown in Table 3.
Next the value of the constant friction force is increased up to 50% of the initial tension, namely
ðF1 þ F2Þ=T0 ¼ 0:5. The stability has been analyzed for a range of V0–o0 combinations where V0

was changed from 2 to 94 m=s with a step of 2m=s, while o0 was changed from 10 to 50 rad=s with
a step of 2 rad=s. Again, the base parameters given in Table 1 are used, along with D=L ¼ 0:5, and
k1 ¼ k2 ¼ 10 N=m.
The unstable combinations for this case are obtained with Floquet analysis and they are shown

in Fig. 8. Some of the corresponding Floquet multipliers are reported in Table 4. The minimum
wave speed for this case still corresponds to the side of the string at the right of the stationary load
for the half-period T=2otoT . The critical transport speed is then given by

V cr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5T0

rð1� ZÞ

s
¼ 65:5m=s for T=2otoT ; DoxoL. (41)
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Fig. 7. The effect of neglecting the spring stiffness, k1 ¼ k2 ¼ 0, for a system subjected to a stationary friction load with

ðF1 þ F2Þ=T0 ¼ 0:1. The parameters are otherwise identical to Fig. 6. Note that the circles correspond to unstable data

points.

G. Zen, S. Müftü / Journal of Sound and Vibration 289 (2006) 551–576 567
Fig. 8 shows that in this case almost all the points on the grid are unstable, even for small values of
V0. Moreover, all the parameter combinations with V04V cr are unstable. Inspection of Table 4,
shows that the Floquet multipliers of the cases with V04V cr are considerably larger as compared
to the cases with V0oV cr . Also note that, while the magnitudes of the Floquet multipliers for
cases with V0oV cr are smaller, they are, in general, greater than their counterparts given in
Tables 2 and 3. Thus it is seen that increasing the friction force not only renders most of the
o0–V0 diagram unstable, but also creates stronger instabilities.
In conclusion, the addition of a stationary frictional load strongly affects the stability of the

system by reducing the resulting tension T2 for the half-period T=2otoT . This confirms that
increasing tension is useful for stability [9]. When the friction force is equal to 10% of the initial
tension, the number of unstable points on the grid increases three-fold. When the friction force is
equal to 50% of the initial tension almost all the points on the grid are unstable, even with small
values of velocity amplitude V0 and frequency o0.
It was also shown that the number of unstable points decreases when the stiffness of the elastic

springs is not negligible, so the springs in this case have a beneficial stabilizing effect on the
system. This result is similar to the findings of Cheng and Perkins, which indicate that for a given
(constant) axial velocity the natural frequencies increase with increasing spring stiffness [17].
It should be mentioned that, with the exception of the region, where V04cmin, it is not possible

to recognize, a clear demarcation between stable and unstable regions in the results presented in
Figs. 2 and 6–10. One of two possible explanations for this behavior may be that a very large area
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Table 3

Floquet multipliers corresponding to the unstable points of Fig. 7 for the frequencies in the range of 0po0p24 rad=s

o0 V0 jljmax o0 V 0 jljmax o0 V 0 jljmax o0 V 0 jljmax

10 12 1.0260E+00 12 88 1.0391E+00 16 56 1.0447E+00 20 34 1.0034E+00

10 18 1.0001E+00 12 90 1.3722E+01 16 60 1.0444E+00 20 36 1.0193E+00

10 30 1.0270E+00 12 92 1.2197E+05 16 72 1.0060E+00 20 38 1.0319E+00

10 38 1.0534E+00 12 94 2.4086E+10 16 78 1.0138E+00 20 48 1.0237E+00

10 50 1.0420E+00 14 18 1.0222E+00 16 82 1.0253E+00 20 50 1.0303E+00

10 62 1.0182E+00 14 22 1.0254E+00 16 90 3.7456E+00 20 52 1.0150E+00

10 66 1.0204E+00 14 34 1.0120E+00 16 92 6.9640E+03 20 86 1.0080E+00

10 72 1.0124E+00 14 36 1.0237E+00 16 94 3.5836E+07 20 90 9.3662E+00

10 84 1.0055E+00 14 38 1.0381E+00 18 24 1.0443E+00 20 92 1.7220E+02

10 86 1.0498E+00 14 42 1.0465E+00 18 26 1.0013E+00 20 94 9.8175E+05

10 88 1.1519E+00 14 44 1.0090E+00 18 34 1.0199E+00 22 20 1.0094E+00

10 90 1.5967E+01 14 48 1.0169E+00 18 38 1.0136E+00 22 30 1.0511E+00

10 92 3.5812E+05 14 50 1.0097E+00 18 42 1.0431E+00 22 32 1.0323E+00

10 94 1.3620E+12 14 58 1.0125E+00 18 44 1.0509E+00 22 36 1.0414E+00

12 12 1.0393E+00 14 70 1.0466E+00 18 46 1.0420E+00 22 42 1.0550E+00

12 14 1.0019E+00 14 72 1.0067E+00 18 50 1.0447E+00 22 52 1.0337E+00

12 20 1.0394E+00 14 74 1.0091E+00 18 56 1.0480E+00 22 56 1.0424E+00

12 22 1.0067E+00 14 80 1.0081E+00 18 58 1.0454E+00 22 66 1.0063E+00

12 24 1.0144E+00 14 86 1.0199E+00 18 60 1.0634E+00 22 74 1.0419E+00

12 30 1.0239E+00 14 88 1.0052E+00 18 62 1.0300E+00 22 80 1.0393E+00

12 32 1.0100E+00 14 90 2.2195E+00 18 68 1.0515E+00 22 88 1.1714E+00

12 34 1.0107E+00 14 92 2.0934E+04 18 70 1.0376E+00 22 90 6.6186E+00

12 42 1.0453E+00 14 94 1.5265E+08 18 86 1.0523E+00 22 92 4.2436E+02

12 46 1.0065E+00 16 20 1.0383E+00 18 88 1.0412E+00 22 94 1.7049E+04

12 48 1.0069E+00 16 22 1.0542E+00 18 90 3.4038E+00 24 10 1.0012E+00

12 70 1.0265E+00 16 28 1.0286E+00 18 92 2.0770E+03 24 12 1.0032E+00

12 72 1.0623E+00 16 42 1.0283E+00 18 94 2.1541E+06 24 14 1.0196E+00

12 74 1.0428E+00 16 44 1.0421E+00 20 12 1.0240E+00 24 20 1.0250E+00

12 78 1.0166E+00 16 50 1.0436E+00 20 30 1.0145E+00 24 22 1.0272E+00

12 82 1.0146E+00 16 52 1.0350E+00 20 32 1.0265E+00 24 28 1.0098E+00

For each data point only the eigenvalue with highest modulus is reported. For a complete list of eigenvalues see [27].

Note that the boxed values indicate the cases where V04V cr ¼ 87:9m=s.
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Fig. 8. The effect of high friction load, ðF1 þ F2Þ=T0 ¼ 0:5, for a system subjected to a stationary friction load at

D=L ¼ 0:5. The parameters are otherwise identical to Fig. 6. Circles correspond to unstable data points.
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in the d–� Ince–Strutt diagram [9,25] is mapped in a very small area in the V0–o0 plane, as also
mentioned in Ref. [9]. In fact, the work of Pakdemirli and Ulsoy [11] indicates that the instabilities
at lower transport speeds occur at fluctuation frequencies that are an order of magnitude higher
than those considered in this paper, for the non-frictional system with non-zero mean velocities.
Also note that the distribution of the grid used on the V0–o0 is too sparse to be able to represent
well-defined stable and unstable regions.

4.2.2. Effect of stationary load location

In order to investigate the effect of the stationary load location, a computer program was
run for the cases with a friction load located at D=L ¼ 0:3 and 0.7. The base parameters given in
Table 1 are used with k1 ¼ k2 ¼ 10N=m and ðF1 þ F2ÞT0 ¼ 0:1. For these cases V0 was changed
from 2 to 30m=s with steps of 2m=s, while o0 was changed from 2 to 30 rad=s with steps of
2 rad=s. The unstable points are shown in Figs. 9 and 10. The corresponding Floquet multipliers
can be found in Ref. [27]. The number of unstable points is 37 for both cases, but the unstable
systems do not correspond to the same combinations of V0 and o0.
5. Summary and conclusions

The dynamic response of a string with negligible flexural stiffness, translating between two fixed
supports and subjected to two frictional guides, which remain in constant contact with the string
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Table 4

Floquet multipliers corresponding to the unstable points of Fig. 8, for the frequencies in the range of 0po0p16 rad=s

o0 V 0 jljmax o0 V 0 jljmax o0 V0 jljmax o0 V0 jljmax

10 2 1.0860E+00 10 74 3.8434E+05 12 52 1.0586E+00 14 30 1.0912E+00

10 4 1.2340E+00 10 76 1.5002E+07 12 54 1.0805E+00 14 32 1.2176E+00

10 6 1.2221E+00 10 78 1.2028E+09 12 56 1.0591E+00 14 34 1.1151E+00

10 8 1.2988E+00 10 80 2.1071E+11 12 58 1.0000E+00 14 36 1.0000E+00

10 10 1.1113E+00 10 82 2.0631E+14 12 60 1.0257E+00 14 38 1.3002E+00

10 12 1.0000E+00 10 84 6.5683E+16 12 62 1.1267E+00 14 40 1.2101E+00

10 14 1.1367E+00 10 86 1.0423E+21 12 64 1.1141E+00 14 42 1.0485E+00

10 16 1.3837E+00 10 88 3.8125E+26 12 66 1.2759E+00 14 44 1.1549E+00

10 18 1.0000E+00 10 90 3.6562E+31 12 68 3.0678E+01 14 46 1.0085E+00

10 20 1.1370E+00 10 92 6.7021E+37 12 70 1.3518E+02 14 48 1.3018E+00

10 22 1.3030E+00 10 94 3.8291E+44 12 72 5.7398E+03 14 50 1.1613E+00

10 24 1.0834E+00 12 2 1.0485E+00 12 74 3.3990E+04 14 52 1.1444E+00

10 26 1.0338E+00 12 4 1.1154E+00 12 76 6.8684E+05 14 54 1.3401E+00

10 28 1.0674E+00 12 6 1.0716E+00 12 78 1.1241E+07 14 56 1.2886E+00

10 30 1.0977E+00 12 8 1.0554E+00 12 80 8.7549E+09 14 58 1.2307E+00

10 32 1.3635E+00 12 10 1.1423E+00 12 82 6.1623E+11 14 60 1.2591E+00

10 34 1.1206E+00 12 12 1.2466E+00 12 84 1.2401E+14 14 62 1.4034E+00

10 36 1.4036E+00 12 14 1.1439E+00 12 86 7.6000E+17 14 64 1.0720E+00

10 38 1.0000E+00 12 16 1.2071E+00 12 88 3.9646E+22 14 66 1.2165E+00

10 40 1.2727E+00 12 18 1.1819E+00 12 90 3.5876E+27 14 68 4.4254E+00

10 42 1.1301E+00 12 20 1.0000E+00 12 92 4.9336E+31 14 70 4.8127E+01

10 44 1.3173E+00 12 22 1.0639E+00 12 94 8.6921E+36 14 72 4.5126E+02

10 46 1.1334E+00 12 24 1.2846E+00 14 2 1.0769E+00 14 74 1.1026E+04

10 48 1.1602E+00 12 26 1.0000E+00 14 4 1.1969E+00 14 76 6.6852E+05

10 50 1.0000E+00 12 28 1.3810E+00 14 6 1.1159E+00 14 78 2.6154E+06

10 52 1.0879E+00 12 30 1.0176E+00 14 8 1.0000E+00 14 80 1.8943E+08

10 54 1.1195E+00 12 32 1.1004E+00 14 10 1.0000E+00 14 82 3.4127E+10

10 56 1.1860E+00 12 34 1.0730E+00 14 12 1.3187E+00 14 84 3.3033E+12
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Table 4 (continued )

o0 V 0 jljmax o0 V 0 jljmax o0 V0 jljmax o0 V0 jljmax

10 58 1.2874E+00 12 36 1.0818E+00 14 14 1.2282E+00 14 86 4.3620E+15

10 60 1.1254E+00 12 38 1.2281E+00 14 16 1.1604E+00 14 88 1.7193E+20

10 62 1.1730E+00 12 40 1.0827E+00 14 18 1.2977E+00 14 90 5.2633E+22

10 64 1.2259E+00 12 42 1.2603E+00 14 20 1.1994E+00 14 92 4.5078E+27

10 66 1.4097E+00 12 44 1.1989E+00 14 22 1.0262E+00 14 94 1.8190E+31

10 68 2.0379E+01 12 46 1.2752E+00 14 24 1.1860E+00 16 2 1.1397E+00

10 70 6.2076E+02 12 48 1.1642E+00 14 26 1.2812E+00 16 4 1.2418E+00

10 72 6.5981E+03 12 50 1.3784E+00 14 28 1.0000E+00 16 6 1.3497E+00

For each data point only the eigenvalue with highest modulus is reported. For a complete list of eigenvalues see [27].

Note that the boxed values indicate the cases where V04V cr ¼ 65:5m=s.

Fig. 9. The effect of guide location ðD=L ¼ 0:3Þ for system a subjected to a stationary friction load with

ðF1 þ F2Þ=T0 ¼ 0:1. The region of data points is made by 2pV0p30m=s and 2po0p30 rad=s with step of V0 ¼

2m=s and o0 ¼ 2 rad=s. The base parameters are reported in Table 1. This case also had k1 ¼ k2 ¼ 10N=m. Circles

correspond to unstable data points. Critical transport speed is V cr ¼ 65:5m=s.
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due to preloaded elastic supports, is investigated numerically using the finite element method and
the Floquet theory. The governing equations of the system for the transverse and the longitudinal
motions were derived with the extended Hamilton’s principle.
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Fig. 10. The effect of guide location ðD=L ¼ 0:7Þ for system a subjected to a stationary friction load with

ðF1 þ F2Þ=T0 ¼ 0:1. The region of data points is made by 2pV0p30m=s and 2po0p30 rad=s with step of V0 ¼ 2m=s
and o0 ¼ 2 rad=s. The base parameters are reported in Table 1. This case also had k1 ¼ k2 ¼ 10N=m. Circles

correspond to unstable data points. Critical transport speed is V cr ¼ 65:5m=s.
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First, the stability of a system with sinusoidally varying axial velocity was investigated.
Numerical results for a case with no friction guides were presented for different values of
maximum speed V0 and speed fluctuation frequency o0. These results were then compared to
those reported by Pakdemirli et al., who employed the Galerkin’s method to discretize the system
in the space domain [9]. The comparison showed that the instabilities occurring for systems
translating with velocity amplitude V0 greater than the wave speed are better predicted by the
finite element discretization than by the Galerkin’s method. The time-history diagrams obtained
with direct time integration confirmed the results of the Floquet theory. These results confirmed
that, in general, a system with sinusoidally varying transport velocity becomes unstable for cases
where the maximum velocity V0 is greater than the critical transport velocity of the non-
accelerating system V cr. A small number of instabilities occurred when V0oV cr.
The Floquet stability analysis was extended to a system with sinusoidally varying transport

speed, subjected to stationary frictional guiding forces. The modeling flexibility provided by the
finite element method is suitable to investigate systems with the frictional guides, because the
discontinuity introduced by the guides can be modeled in a more general fashion. This work
showed that when the transport speed varies periodically, the friction force introduces more
unstable points in the range V0oV cr as compared to the constant velocity case presented, by
Cheng and Perkins [17]. The instabilities induced by friction were found to be relatively mild, as
compared to those that occur when V04V cr. It was also found that as the relative magnitude of
the friction force increases, almost any combination of V0 and o0 in the grid leads to instability.
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On the other hand, increasing the stiffness of the guides reduces the number of unstable points, in
the range of velocities and oscillation frequencies considered. The guide location did not affect the
number of stable points, but their distribution on the V0–o0 plane was affected.
Future work should include analysis of different type of velocity/acceleration profiles, should

consider a wider range of frequencies, and should look into wave propagation in the string by
using direct time integration, in order explain the physical nature of the instability introduced by
frictional loads.
Appendix A

The Floquet theory demonstrates to be a powerful method not only to predict the instability of
a system, but also to evaluate quantitatively the magnitude of such instabilities. Defining as jljmax

the highest modulus of the characteristic multipliers of the system, it is expected that the
amplitude of oscillation after m periods will grow with a factor jljmmax according to

wiðtþmTÞ ¼ jljmmaxwiðtÞ. (42)

In order to verify the amplitude growth rate predicted by Eq. (42), the displacement time history
of the central node for the combination V0 ¼ 92; o0 ¼ 48m=s was evaluated. This combination of
parameters can be seen to be unstable from Table 2, with lmax ¼ 1:0414. Time integration was
carried out for m ¼ 100 periods. The numerically calculated amplitude growth is compared to the
prediction of Eq. (42) in Fig. 11, where the relative error between numerical values and analytical
predictions, for this case, is also shown. The figure shows that the error grows quickly up to 40%
in the first 50 periods, but after that it remains nearly constant. Similar comparisons for the other
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Fig. 11. Maximum displacement of the node at x ¼ L=2 versus time (expressed in terms of number of periods). The

(—–) curve is obtained with Eq. (42), while the (–�–) curve is obtained by numerical integration. Also shown are the

relative error values between numerical and analytical solutions, when Eq. (42) is applied starting from t0 ¼ 50T given

by the ð� � �’� ��Þ curve, instead of t0 ¼ 0 given by (–��–) curve, in order to minimize the effect of the initial conditions.

The parameters used in the program are reported in Table 1; the jljmax value of this case is 1.0414.
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unstable combinations of Fig. 2 lead to the same conclusion; initially, the relative error reaches
large values and after a while it remains constant.
This behavior can be explained by remembering that the Floquet theory uses a fictitious initial

condition set (1st set of ICs) to be equal to the identity matrix, while the numerical integration
uses the real initial conditions (37). The effect of initial conditions can be reduced by applying
Eq. (42) starting from t ¼ 50T , instead of t ¼ 0, by using the displacement and velocity profiles
of the string at this time step as initial conditions (2nd set of ICs); Fig. 11 shows that in this case
the relative error between analytical predictions and numerical values is within 2%, therefore
Eq. (42) holds very well. The small difference is attributed to the numerical round-off errors.
Appendix B

One of Matlab’s (version 5.3) built-in ODE solvers, ODE113, has been used to evaluate the
fundamental set of solutions. This is an implementation of a variable order Adam–Bashfort–-
Moulton method and gives good results when the tolerances are stringent. For more information
about the algorithm involved, see the Matlab ODE suite by Shampine and Reichelt [26]. In the
program written for Floquet analysis, (Flo8.m), the monodromy matrix is evaluated by direct
time integration of the equations of motion over one period. It should be noted that one of the
factors affecting the time consumption of this program is the value of o0, as the period T is
inversely proportional to the frequency o0. Therefore, the larger the period T, the longer will be
the time to run the programs.
Another factor is the number of elements used in the solution. It is well known that the

accuracy of a finite element solution improves by using a larger number of elements. However,
this is accompanied with an increase in the computational cost. Table 5 gives the computational
cost of evaluating a single V0–o0 pair, (42 rad=s, 84m=s), using different number of elements ðnÞ
with the parameters listed in Table 1. It is seen that a four-fold increase of n from 10 to 40 causes
286-fold increase in the time spent to find the Floquet multipliers for this pair of V0–o0. This
analysis was carried out on a personal computer with a Pentium 4 processor with 2.66GHz,
256MB RAM, Windows XP operating system and Matlab version 5.3.
The location and number of the unstable points on the V0–o0 grid changes depending on n. The

effect using 20 elements ðn ¼ 20Þ instead of 10 reported in the paper, is presented in Fig. 12. This
Table 5

Time consumption of the Matlab program that performs the Floquet analysis, for different n values, for a single

o0 ¼ 42 rad=s and V0 ¼ 84m=s

Number of elements, n Time (s)

10 203

20 2731

30 14007

40 57995

The Matlab Runge–Kutta solver ODE113 was used, with relative and absolute error tolerance of 10�8.
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Fig. 12. The unstable points predicted by using 20 elements over a subset of the parameter range reported in Fig. 6

where n ¼ 10 was used. Circles correspond to unstable data points.
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figure is evaluated in the region 10pV0p20m=s and 10po0p20 rad=s with increments of 2 for
both variables, along with k1 ¼ k2 ¼ 10N=m, D=L ¼ 0:5, T0=ðF1 þ F2Þ ¼ 0:1. This figure shows
that 24 of the possible 60 points are unstable when n ¼ 20. Comparing this with the 12 unstable
points, in the same region for n ¼ 10 (Fig. 6), it can be said that the unstable points cluster, when
the number of finite elements increase. A similar conclusion was reached by Pakdemirli et al. using
the Galerkin method [9].
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